Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
JMIR Public Health Surveill ; 7(4): e23806, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-2141288

ABSTRACT

BACKGROUND: Consumer-based physical activity trackers have increased in popularity. The widespread use of these devices and the long-term nature of the recorded data provides a valuable source of physical activity data for epidemiological research. The challenges include the large heterogeneity between activity tracker models in terms of available data types, the accuracy of recorded data, and how this data can be shared between different providers and third-party systems. OBJECTIVE: The aim of this study is to develop a system to record data on physical activity from different providers of consumer-based activity trackers and to examine its usability as a tool for physical activity monitoring in epidemiological research. The longitudinal nature of the data and the concurrent pandemic outbreak allowed us to show how the system can be used for surveillance of physical activity levels before, during, and after a COVID-19 lockdown. METHODS: We developed a system (mSpider) for automatic recording of data on physical activity from participants wearing activity trackers from Apple, Fitbit, Garmin, Oura, Polar, Samsung, and Withings, as well as trackers storing data in Google Fit and Apple Health. To test the system throughout development, we recruited 35 volunteers to wear a provided activity tracker from early 2019 and onward. In addition, we recruited 113 participants with privately owned activity trackers worn before, during, and after the COVID-19 lockdown in Norway. We examined monthly changes in the number of steps, minutes of moderate-to-vigorous physical activity, and activity energy expenditure between 2019 and 2020 using bar plots and two-sided paired sample t tests and Wilcoxon signed-rank tests. RESULTS: Compared to March 2019, there was a significant reduction in mean step count and mean activity energy expenditure during the March 2020 lockdown period. The reduction in steps and activity energy expenditure was temporary, and the following monthly comparisons showed no significant change between 2019 and 2020. A small significant increase in moderate-to-vigorous physical activity was observed for several monthly comparisons after the lockdown period and when comparing March-December 2019 with March-December 2020. CONCLUSIONS: mSpider is a working prototype currently able to record physical activity data from providers of consumer-based activity trackers. The system was successfully used to examine changes in physical activity levels during the COVID-19 period.


Subject(s)
COVID-19 , Electronic Data Processing/methods , Epidemiological Monitoring , Fitness Trackers/statistics & numerical data , Software , Adult , Exercise , Feasibility Studies , Female , Humans , Male , Norway , Quarantine/statistics & numerical data , SARS-CoV-2
2.
PLoS One ; 17(1): e0262609, 2022.
Article in English | MEDLINE | ID: covidwho-1643269

ABSTRACT

BACKGROUND: The use of linked healthcare data in research has the potential to make major contributions to knowledge generation and service improvement. However, using healthcare data for secondary purposes raises legal and ethical concerns relating to confidentiality, privacy and data protection rights. Using a linkage and anonymisation approach that processes data lawfully and in line with ethical best practice to create an anonymous (non-personal) dataset can address these concerns, yet there is no set approach for defining all of the steps involved in such data flow end-to-end. We aimed to define such an approach with clear steps for dataset creation, and to describe its utilisation in a case study linking healthcare data. METHODS: We developed a data flow protocol that generates pseudonymous datasets that can be reversibly linked, or irreversibly linked to form an anonymous research dataset. It was designed and implemented by the Comprehensive Patient Records (CPR) study in Leeds, UK. RESULTS: We defined a clear approach that received ethico-legal approval for use in creating an anonymous research dataset. Our approach used individual-level linkage through a mechanism that is not computer-intensive and was rendered irreversible to both data providers and processors. We successfully applied it in the CPR study to hospital and general practice and community electronic health record data from two providers, along with patient reported outcomes, for 365,193 patients. The resultant anonymous research dataset is available via DATA-CAN, the Health Data Research Hub for Cancer in the UK. CONCLUSIONS: Through ethical, legal and academic review, we believe that we contribute a defined approach that represents a framework that exceeds current minimum standards for effective pseudonymisation and anonymisation. This paper describes our methods and provides supporting information to facilitate the use of this approach in research.


Subject(s)
Biomedical Research/methods , Confidentiality , Data Anonymization , Biomedical Research/ethics , Datasets as Topic , Electronic Data Processing/ethics , Electronic Data Processing/methods , Electronic Health Records/organization & administration , Humans , Information Storage and Retrieval , United Kingdom
3.
J Prev Med Public Health ; 54(1): 22-30, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1097323

ABSTRACT

OBJECTIVES: The coronavirus disease 2019 (COVID-19) pandemic is a public health emergency posing unprecedented challenges for health authorities. Social media may serve as an effective platform to disseminate health-related information. This study aimed to assess the extent of social media use, its impact on preventive behavior, and negative health effects such as cyberchondria and information overload. METHODS: A cross-sectional observational study was conducted between June 10, 2020 and August 9, 2020 among people visiting the outpatient department of the authors' institution, and participants were also recruited during field visits for an awareness drive. Questions were developed on preventive behavior, and the Short Cyberchondria Scale and instruments dealing with information overload and perceived vulnerability were used. RESULTS: The study recruited 767 participants with a mean age of about 45 years. Most of the participants (>90%) engaged in preventive behaviors, which were influenced by the extent of information received through social media platforms (ß=3.297; p<0.001) and awareness of infection when a family member tested positive (ß=29.082; p<0.001) or a neighbor tested positive (ß=27.964; p<0.001). The majority (63.0%) of individuals often searched for COVID-19 related news on social media platforms. The mean±standard deviation scores for cyberchondria and information overload were 9.09±4.05 and 8.69±2.56, respectively. Significant and moderately strong correlations were found between cyberchondria, information overload, and perceived vulnerability to COVID-19. CONCLUSIONS: This study provides evidence that the use of social media as an information- seeking platform altered preventive behavior. However, excessive and misleading information resulted in cyberchondria and information overload.


Subject(s)
Electronic Data Processing/instrumentation , Preventive Medicine/methods , Social Media/instrumentation , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , Cross-Sectional Studies , Electronic Data Processing/methods , Female , Humans , India/epidemiology , Male , Middle Aged , Pandemics/prevention & control , Preventive Medicine/standards , Preventive Medicine/statistics & numerical data , Public Health , Social Media/trends , Surveys and Questionnaires
4.
Physiol Genomics ; 52(12): 590-601, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-889941

ABSTRACT

In this paper, two novel, powerful, and robust convolutional neural network (CNN) architectures are designed and proposed for two different classification tasks using publicly available data sets. The first architecture is able to decide whether a given chest X-ray image of a patient contains COVID-19 or not with 98.92% average accuracy. The second CNN architecture is able to divide a given chest X-ray image of a patient into three classes (COVID-19 versus normal versus pneumonia) with 98.27% average accuracy. The hyperparameters of both CNN models are automatically determined using Grid Search. Experimental results on large clinical data sets show the effectiveness of the proposed architectures and demonstrate that the proposed algorithms can overcome the disadvantages mentioned above. Moreover, the proposed CNN models are fully automatic in terms of not requiring the extraction of diseased tissue, which is a great improvement of available automatic methods in the literature. To the best of the author's knowledge, this study is the first study to detect COVID-19 disease from given chest X-ray images, using CNN, whose hyperparameters are automatically determined by the Grid Search. Another important contribution of this study is that it is the first CNN-based COVID-19 chest X-ray image classification study that uses the largest possible clinical data set. A total of 1,524 COVID-19, 1,527 pneumonia, and 1524 normal X-ray images are collected. It is aimed to collect the largest number of COVID-19 X-ray images that exist in the literature until the writing of this research paper.


Subject(s)
COVID-19/diagnostic imaging , Mass Chest X-Ray , Neural Networks, Computer , SARS-CoV-2 , Algorithms , COVID-19/virology , Data Accuracy , Electronic Data Processing/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL